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Stochastic control

Introduction and motivation

Introduction – Motivation

I Recent interest in models displaying interaction between agent’s
state and its distribution

• Mean Field Games (MFG)
• Control of McKean-Vlasov system (MKV)

I In these two contexts, the control problem is non-standard : need to
develop new methods and theoretical results.

I This article :
• ”Forward-Backward Stochastic Differential equations and

controlled McKean-Vlasov Dynamics”
• R. Carmona and F. Delarue
• Develop probabilistic methods (FBSDE)
• from the Stochastic Pontryagin Maximum Principle applied to

McKean-Vlasov system.
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Stochastic control

Introduction and motivation

Introduction – A non-standard problem

I Control of a specific Stochastic Differential Equations (SDE)
I SDE ’of McKen Vlasov type’ (MKV-SDE hereafter) :

dXt = b(t,Xt,PXt , αt)dt + σ(t,Xt,PXt , αt)dWtwhere
• W : m-dim Brownian motion
• b and σ deterministic functions
• Controlled : common policy α valued in A
• Depends on the distribution PXt of the solution of the SDE
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Stochastic control

Introduction and motivation

Introduction – Control problem
I The control problem is find the optimal path (αt)t.

J(α?) = inf
{αt}t

E
[∫ T

0
f (t,Xt,PXt , αt)dt + g(XT ,PXT )

]
I Issues :

• The SDE is non-Markovian (not memoryless anymore)
– Cannot use Dynamic Programming / HJB

• Infinite dimensional differential calculus
– Need to find the derivative of Hamiltonian w.r.t. the measure
– Introduce a new formalism for DmH(X,PX)

• Common policy α :
– Difference with MFG : here Pareto equilibrium (i.e. Social planning)

compared to Nash-equilibrium
– In MFG the control of each agent leads to Mean Field interaction.
– Here : limit drawn first (mean field interaction first) and then control.
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Stochastic control

Introduction and motivation

Introduction – Results and methods developed

I Stochastic Pontryagin maximum principle
• Find an adjoint equation Yt :
• Will be a backward SDE, solved for a couple (Yt,Zt)
• Necessary and sufficient conditions for optimality :
• Maximisation of the Hamiltonian H(·, α?t ) = infα H(·, α).

I FBSDE
• Given the (Forward)-SDE of the state Xt and the BSDE of the

adjoint Yt
• when α?t is the optimum of H, the system Forward-Backward

will be coupled
• Analysis of this system and existence/unicity result.
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Stochastic control

Introduction and motivation

Introduction – Control problem

I Other results :
• A result on the decoupling field
• i.e. Expression of the adjoint Yt as a function u of the state Xt :

P
(
Y t,ξ

t = u(t, ξ,Pξ)
)

= 1

• Propagation of chaos and approximate equilibria :
• Control of McKean-Vlasov dynamics provides equilibria for N

players MFG with a common (i.e. exchangeable) strategy

lim
N→∞

inf
β

J(β) = J(α?)
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Stochastic control

Control problem – setting and preliminaries

Preliminaries : Differentiability of function of measure

I Notion of differentiability of function with respect to measures :
• Consider a function H : P2(Rd) 3 µ→ H(µ)
• Idea : Analyse the lifting (extension) H̃(X̃) depending on the r.v.

X̃ ∈ L2.

I H is differentiable in µ0 if there exists a r.v. X0 ∼ µ0 s.t. H̃ is the
(Fréchet) differential at X̃0

• DH̃(X̃0) is the ’representation’ of DµH(µ0)
• This derivative will be a (determ.) function x 7→ DµH(µ0)(·) :

H(µ) = H(µ0) + DH̃(X̃0) · (X̃ − X̃0) + o(||X̃ − X̃0||2)

= H(µ0) + DµH(µ0)(X̃0) · (X̃ − X̃0) + o(||X̃ − X̃0||2)
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Stochastic control

Control problem – setting and preliminaries

Preliminaries : Differentiability w.r.t measure, an example

I Let’s give a concrete example :
I If we define : H(µ) =

∫
Rd h(x)µ(dx) = 〈h, µ〉

• It is linear in L2 !

I Its lifting : H̃(X̃) = Ẽ[h(X̃)]

I Its derivative : DH̃(X̃) · Y = Ẽ[Dh(X̃) · Y]

I Consequently : DµH(µ0)(·) ≡ Dh(·)
• which is not equal to the Frechet-differential h.

I Other example : function of empirical measure :
I ūN : x = (x1, x2, · · · , xN) 7→ u

(
µ̄N
)

• With µ̄N = 1
N

∑
i δxi

I Then ∂xi ū
N(x) = 1

N Dµu
(
µ̄N
)
(xi)
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Stochastic control

Control problem – setting and preliminaries

Preliminaries : other notions
I Other notions :
I Convergence of empirical measures µ̄N :

• In the sense of the Wasserstein distance

W2(µ, ν) = inf
{(∫

Rd×Rd
|x− y|2 π(dx, dy)

) 1
2

∣∣∣ π ∈ P2(Rd×Rd) with marginals µ and ν

}

I Convergence of functions of empirical measure u(x)→ u(µ) for
W2

I Convergence of the derivative : DūN(x)→ 1
N

∑
i u(µ)(xi)

• Matters to show approximate equilibria and for the convergence of
system of finitely many agents.

I Joint differentiability in (x, µ) (if the lifting is jointly diff.)
I Convexity : h on P2 – which is differentiable – is convex if :

h(µ′)− h(µ)− E
[
Dµh(µ)(X̃) · (X̃′ − X̃)

]
≥ 0
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Stochastic control

A stochastic Pontryagin Principle

SPMP - Preliminaries

A stochastic Pontryagin Principle – Hamiltonian

I When controlling the SDE of McKean-Vlasov type, the
Hamiltonian writes :

H(t, x, µ, y, z, α) = b(t, x, µ, α) · y + σ(t, x, µ, α) · z + f (t, x, µ, α)

I One can define its lifting : H(t, x,PX̃, y, z, α) = H̃(t, x, X̃, y, z, α)

I Therefore, the derivative w.r.t. PX̃ is given by :

DµH(t, x, µ0, y, z, α)(X̃) = DH̃(t, x, X̃, y, z, α)
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Stochastic control

A stochastic Pontryagin Principle

SPMP - Preliminaries

A stochastic Pontryagin Principle – Adjoint

I Under some regularity/Lipschitzianity of coefficient (b, σ) and
regularity conditions of derivatives of f and g w.r.t. x and µ, we
define the (Yt,Zt) solution of the adjoint backward SDE{

dYt = −DxH(t,Xt,PXt , αt,Yt,Zt)dt + ZtdWt − Ẽ
[
DµH(t, X̃t,PXt , αt, Ỹt, Z̃t)(Xt)

]
YT = Dxg(XT ,PXT ) + Ẽ

[
Dµg(X̃T ,PXT )(XT)

]
• Tilde variables : independent copies
• DµH( ·̃ ,PXt )(Xt) : deterministic function taken in Xt.
• Existence/uniqueness of this BSDE : provided by a suitable

modification of Pardoux and Peng’s proof
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Stochastic control

A stochastic Pontryagin Principle

SPMP - Necessary and sufficient conditions

Pontryagin Principle – Necessary condition

I Assumption of convexity are important :
• The Hamiltonian H is convex in α
• The space of control A is convex
• Regularity assumptions on the coefficients : continuity,

differentiability, uniform-boundedness in initial conditions and of
the derivatives, and ’at-most’ linearity in (x, µ, α)

I The optimum of the control necessarily implies that the
Hamiltonian is minimized :

H(t,Xt,PXt ,Yt,Zt, α
?
t ) = inf

α′
H(t,Xt,PXt ,Yt,Zt, α

′) dt⊗ dPa.e.

I The proof use perturbation arguments.
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Stochastic control

A stochastic Pontryagin Principle

SPMP - Necessary and sufficient conditions

Pontryagin Principle – Necessary condition, proof
I Ideas of the proof : perturbation method :
I Variations of the objective J around the optimal α?

• Taking J at αε = α+ ε(β − α)
• Computing the Gâteaux-derivative of J

I Using notation θt = (t,Xt,PXt , αt) and ϑT = (Xt,PXt )

• Start by defining a variation process Vt, being the ’First-order
approximation’ [Lem. 4.1] of the perturbed process : Xα

ε

=: Xε

lim
ε→0

E

[
sup

0≤t≤T

∣∣∣Xε − X
ε

− Vt

∣∣∣2] = 0

• Vt is complicated and is composed of derivatives of (b, σ) w.r.t. the
variables (x, µ, α).

• Computing the G-diff of J [Lem. 4.2, Cor. 4.4] in α :

lim
ε→0

d
d ε

J(αε) = E
∫ T

0

[
Dxf (θt) · Vt + Ẽ(Dµf (θt)(X̃t)) + Dαf (θt) · (βt − αt)

]
dt

+ E
[
Dxg(ϑT) · VT + Ẽ(Dµg(ϑT)(X̃t) · ṼT)

]
Thomas Bourany Stochastic control Soutenance 13 / 28



Stochastic control

A stochastic Pontryagin Principle

SPMP - Necessary and sufficient conditions

Pontryagin Principle – Necessary condition, proof
I Ideas of the proof : perturbation method :
I Variations of the objective J around the optimal α?

• Using the reexpression of the last term [Lem. 4.3 &Cor. 4.4], as an
integral over time, one can obtain :

lim
ε→0

d
d ε

J(αε) = E
∫ T

0

[
DαH(t,Xt,PXt ,Yt,Zt, αt) · (βt − αt)

]
dt

• All these, obtained through chain-rule argument, but this time with
function of measures.

• By optimality condition :

lim
ε→0

d
d ε

J(α+ ε(β − α)) ≥ 0

• Thanks to convexity of the Hamiltonian in α, obtain :

H(t,Xt,PXt ,Yt,Zt, βt) ≥ H(t,Xt,PXt ,Yt,Zt, αt) dt⊗ dPa.e.
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Stochastic control

A stochastic Pontryagin Principle

SPMP - Necessary and sufficient conditions

Pontryagin Principle – Sufficient condition

I Under convexity assumptions :
• Convexity of the cost function : (x, µ) 7→ g(x, µ) and

(x, µ, α) 7→ H(t, x, µ,Yt,Zt, α) dt ⊗ dPa.e.
• The same regularity assumptions as above
• If X is solution of the McKean-Vlasov SDE and (Yt,Zt)t∈[0,T] the

adjoint processes,

I If :

H(t,Xt,PXt ,Yt,Zt, α
?
t ) = inf

α′
H(t,Xt,PXt ,Yt,Zt, α

′) dt⊗dP−a.e.

I It is sufficient for the optimal control J(α?) = infα′ J(α′).
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Stochastic control

A stochastic Pontryagin Principle

SPMP - Necessary and sufficient conditions

Pontryagin Principle – Sufficient condition, proof

I Ideas of the proof : relies deeply on the assumption of convexity
I Express the difference J(α?)− J(α′)

• In terms of differences in the functions g and f
• Using f (θt) = H(θt)− (b · y + σ)(θt)
• Use the convexity of H w.r.t. (x, µ)

J(α?)−J(α′) ≤ E
∫ T

0

{
H(θt)−H(θ′t )−DxH(θt)·(Xt−X′t )+Ẽ

[
DµH(θ̃)(Xt)·(X̃t−X̃t)

]}
dt ≤ 0

I implying the optimality of α?

Thomas Bourany Stochastic control Soutenance 16 / 28



Stochastic control

Reformulation as a Forward-Backward SDE

Reformulation as a Forward-Backward SDE

I Now, we had a SDE for Xt and a BSDE for (Yt,Zt)

I Idea : with a sufficient and necessary condition, need to use
probabilistic methods to solve the control.

I Obtain a FBSDE system that is coupled by the optimal control :

α?(t,Xt,PX,Yt,Zt) ∈ argmin
α

H(·, α)

I Require to restrict the model, i.e. with assumptions :
• (i) the coefficients linear in the first-moment of the law of state
µ̄ =

∫
xdµ(x)

• (ii) the above regularity assumptions on functions/coefficients
• (iii) Lipschitz-continuity of Df ,Dg (w.r.t. x, µ or α)
• (iv) Convexity of f and thus H in (x, µ, α)
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Stochastic control

Reformulation as a Forward-Backward SDE

Reformulation as a Forward-Backward SDE

I The FBSDE is reformulated :

dXt =
[
b0

t + b1
t E[Xt] + b2

t Xt + b3
t α
?(t,Xt,PX, Yt, Zt)

]
dt + (1)[

σ0
t + σ1

t E[Xt] + σ2
t Xt + σ3

t α
?(t,Xt,PX, Yt, Zt)

]
dWt

dYt = −
[
Dxf
(
t,Xt,PXt , α

?(t,Xt,PX, Yt, Zt)
)
+ b2

t Yt + σ2
t Zt

]
dt + ZtdWt

−
{
Ẽ
[
Dµf (t,Xt,PX, α

?(t, X̃t,PX, Ỹt, Z̃t)
)
(Xt)

]
+ b1

t E[Yt] + σ1
t E[Zt]

}
dt

X0 = x0 YT = Dxg(XT ,PXT ) + Ẽ
[
Dµg(X̃T ,PXT )(XT)

]
where b0

t , b
1
t , b

2
t , b

3
t , σ

0
t , σ

1
t , σ

2
t and σ3

t are the parameters of the model

I Under the above conditions, this FBSDE has a unique solution.
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Stochastic control

Reformulation as a Forward-Backward SDE

Forward-Backward SDE – Existence and unicity

I Based on the continuation method :
• Use the result of existence and uniqueness when the FBSDE is

known to hold.
• And show the result is preserved when the coefficients are

perturbed.
• Linear perturbations, (natural), which justify the restriction of the

model.
I To insure that the function (t, x, µ, y, z) 7→ α?(t, x, µ, y, z) is locally

bounded and Lipschitz continuous w.r.t. (x, µ, y, z)
I In particular, the Lipschitz-property w.r.t. µ is non-standard and is

proved by the use of (iii), convexity of f and α? being critical point
of the Hamiltonian.
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Stochastic control

Reformulation as a Forward-Backward SDE

Forward-Backward SDE – Existence and unicity, proof

I Ideas of the proof : Continuation method :
I Reformulation of the FBSDE :

• Discounting (b, σ) and (DxH,DµH) and (Dxg,Dµg) by γ,
• Adding linearly a perturbation I = (Ib, Iσ, I f , Ig)

I Using the notation Θt = (t,Xt,PXt , αt,Yt,Zt),
θt = (t,Xt,PXt , αt) and ϑT = (XT ,PXT ) :
dXt =

(
γb(θt) + Ib

t

)
dt +

(
γσ(θt) + Iσt

)
dWt

dYt = −
(
γDxH(Θt) + Ẽ

[
DµH(Θ̃t)(Xt)

]
+ I f

t

)
dt + ZtdWt

YT = γ
(

Dxg(ϑT) + Ẽ
[
Dµg(ϑ̃T)(XT)

])
+ Ig

T

αt = α?(Θt)

• This formulation is F(γ, ξ, I) for initial condition X0 = ξ
• Property Sγ holds true when the FBSDE F(γ, ξ, I) – for any
ξ ∈ L2 and any I – has a unique solution.
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Stochastic control

Reformulation as a Forward-Backward SDE

Forward-Backward SDE – Existence and unicity, proof

I Ideas of the proof :
I Based on [Lemma 5.4] : if there exists a γ ∈ [0, 1) s.t. Sγ holds

true, then there exists δ0 s.t. Sγ+η holds true for η ≤ δ0 and
γ + η ≤ 1.

I The proof of this lemma is based on Picard’s contraction theorem.

I The existence and uniqueness is thus proved :
• Since S0 – the trivial solution of the FBSDE – is known
• Induction on η up to S1 and I ≡ 0⇒ prove the result for the

FBSDE eq. (1).
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Stochastic control

Reformulation as a Forward-Backward SDE

Other results – Decoupling field
I Main difficulty of this FBSDE is that Xt and Yt are coupled by the

optimum α?(t,Xt,PXt ,Yt,Zt)
I There exists a decoupling field :

• Measurable mapping from the solution of the SDE to the solution of
the BSDE

I Holds for a specific initial value : ξ

Yξt = u(t, ξ,Pξ) a.e.

I Holds for the whole space :

∀t ∈ [0,T]Yξt = u(t,Xξt ,Pξ) a.e.

I The function will satisfy the master equation PDE.
I Open question : difficulty when the coefficient (b, σ, f , g) depends

on randomness (+ common noise).
Thomas Bourany Stochastic control Soutenance 22 / 28



Stochastic control

Discussion and relation with other topics

Difference with MFGs

Difference with MFGs

I Difference between Mean Field Games and Control of McKean
Vlasov

I Reference : Carmona, Delarue and Lachapelle (2013),
I Both models : asymptotic behavior of stochastic differential games

when the number of players goes to infinity.
I Which notion of equilibrium we consider :

• MFG : Nash-equilibrium,
I When an agent optimize, considers the worst possible outcome of the

other players
I The measure of agents is fixed

• Control of McKean-Vlasov : Pareto (cooperative) optimum :
I When the social-planner optimize, it does change the distribution
I Requires the derivative of the Hamiltonian w.r.t. α and w.r.t. µ.
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Stochastic control

Discussion and relation with other topics

Difference with MFGs

Difference with MFGs – Probabilistic approach
I Difference between Mean Field Games and Control of McKean

Vlasov
I Reference : Carmona, Delarue and Lachapelle (2013),

• Question : order in which one perform the optimization (control)
and the passage to the limit :

I Resolution using probabilistic approach : Pontryagin principle and
FBSDE (coupled !)

I But not of McKean-Vlasov type : no change of PX when
perturbing α.
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Stochastic control

Discussion and relation with other topics

Difference with Dynamic Programming Approach

HJB on the space of measure

I Idea : In this setting, the SDE of McKean Vlasov setting is
non-Markovian

I Expand the state space : from Rd to Rd×P2(Rd)

I Flow property :
• If µ is the (initial) law of X0
• Defining PXt0,X0

t
=: Pt0,µ0

t

• This will imply Pt0,µ0
t = Ps,Pt0,µ0

s
t .

I ⇒ restore the Markov property of the state process.
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Discussion and relation with other topics

Difference with Dynamic Programming Approach

HJB on the space of measure
I Restart from the control problem :

v(t0, µ0) = inf
{αt}T

t0

E
[∫ T

t0
f (t,Xt,Pt0,µ0

t , α)dt + g(XT ,PXT )

]
I Define fE(t, µ, α) := 〈 f

(
t, ·, µ, α(t, ·, µ)

)
, µ〉 =

Êµ
(
f (t, X̂t, µ, α(t, X̂t, µ))

)
, and gE(µ) = 〈g(·, µ), µ〉.

I With Fubini’s theorem and

v(t0, µ0) = inf
α

[∫ T

t0
fE
(
t,Pt0,µ0

t , α(·)
)
dt + gE(Pt0,µ

T )

]
I Yields the DPP [Thm 3.1] :

v(t0, µ0) = inf
α

[∫ τ

t0
fE
(
t,Pt0,µ0

t , α(·)
)
dt + v(τ,Pt0,µ0

τ )

]
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Difference with Dynamic Programming Approach

HJB on the space of measure
I Using the same notion of differentiability w.r.t. measure as above,

one can prove the corresponding Itô’s formula.
I Obtain the infinitesimal generator :

Lαt v(t, µ)(x) = Dµv(t, µ)(x)·b(t, x, µ, α(t, x, µ))+1
2

Tr
(

DxDµv(t, µ)(x)σσT(t, x, µ, α(t, x, µ))
)

I the HJB is the following :

∂tv + inf
α

[
fE(t, µ, α) + 〈Lαt v(t, µ)(·), µ〉

]
= 0 on [0,T)× P2(Rd)

v(T, ·) = gE on P2(Rd)

I ’Standard’ verification methods :
• Supposing w is bounded in C1,2

(
[0,T]×P2(Rd)

)
• and solution of HJB and α? realize the inf. of the Hamiltonian
• then w = v and the optimal control is given in feedback form by α?.

I Viscosity solution :
• The value function (defined on the space of measure !) is a viscosity

solution to the HJB [Prop 5.1].
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Discussion and relation with other topics

Difference with Dynamic Programming Approach

Discussion and conclusion

I Complete, exhaustive article
I Several restrictive assumptions for the proof of

existence/uniqueness of the coupled FBSDE.
I Several results not so new (Differentiability w.r.t. measure,

Pontryagin Principle for MKV SDE)
I However, very interesting subject, pedagogical approach, link with

many other theories.

I Thank you for you attention !
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Carmona, René, François Delarue et al. (2013), ‘Mean field forward-backward
stochastic differential equations’, Electronic Communications in Probability 18.
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