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Stochastic control

LImroduction and motivation

Introduction — Motivation

» Recent interest in models displaying interaction between agent’s
state and its distribution

¢ Mean Field Games (MFG)
* Control of McKean-Vlasov system (MKV)

> In these two contexts, the control problem is non-standard : need to
develop new methods and theoretical results.
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Stochastic control

- Introduction and motivation

Introduction — Motivation

» Recent interest in models displaying interaction between agent’s
state and its distribution
* Mean Field Games (MFG)
* Control of McKean-Vlasov system (MKV)

» In these two contexts, the control problem is non-standard : need to
develop new methods and theoretical results.

» This article :
* “Forward-Backward Stochastic Differential equations and
controlled McKean-Vlasov Dynamics”
* R. Carmona and F. Delarue
* Develop probabilistic methods (FBSDE)
* from the Stochastic Pontryagin Maximum Principle applied to
McKean-Vlasov system.
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Stochastic control

L Introduction and motivation

Introduction — A non-standard problem

» Control of a specific Stochastic Differential Equations (SDE)

» SDE ’of McKen Vlasov type’ (MKV-SDE hereafter) :
where dXt = b(t, X[, ]PX;; a[)d[ + U(t, X[, ]PX;; a[)th

* W : m-dim Brownian motion

* b and o deterministic functions

* Controlled : common policy o valued in A

* Depends on the distribution Py, of the solution of the SDE
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Stochastic control

LIm.roduction and motivation

Introduction — Control problem
» The control problem is find the optimal path («),.
T
J(a*) = {11‘1{ E |:/ f(t, X, Px,, a,)dt + g(XT,]P)XT)
(67543 0

> Issues :
* The SDE is non-Markovian (not memoryless anymore)
— Cannot use Dynamic Programming / HIB
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Stochastic control

L Introduction and motivation

Introduction — Control problem

» The control problem is find the optimal path («),.

T
J(Oé*) = {lal’lf; E |:/0 f(t, X;,]PX[, O[;)dl’-l-g(XT,]P)XT)

> Issues:
* The SDE is non-Markovian (not memoryless anymore)
— Cannot use Dynamic Programming / HIB
* Infinite dimensional differential calculus

— Need to find the derivative of Hamiltonian w.r.t. the measure
— Introduce a new formalism for D,,H (X, Px)
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Stochastic control

Llnlmducti(m and motivation

Introduction — Control problem

» The control problem is find the optimal path («),.

T
J(a*) — {1;1{; E |:/O f(l‘,X,,PX[,at)dl‘+g(XT,IP)XT)

> Issues:

* The SDE is non-Markovian (not memoryless anymore)
— Cannot use Dynamic Programming / HIB

* Infinite dimensional differential calculus
— Need to find the derivative of Hamiltonian w.z.t. the measure
— Introduce a new formalism for D,,H (X, Px)

* Common policy « :
— Difference with MFG : here Pareto equilibrium (i.e. Social planning)

compared to Nash-equilibrium

— In MFG the control of each agent leads to Mean Field interaction.
— Here : limit drawn first (mean field interaction first) and then control.
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Stochastic control

LIm.roduction and motivation

Introduction — Results and methods developed

» Stochastic Pontryagin maximum principle
* Find an adjoint equation Y; :
+ Will be a backward SDE, solved for a couple (Y;, Z;)
» Necessary and sufficient conditions for optimality :
 Maximisation of the Hamiltonian H (-, a;f) = inf, H(-, ).
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Stochastic control

L Introduction and motivation

Introduction — Results and methods developed

» Stochastic Pontryagin maximum principle
* Find an adjoint equation Y; :
+ Will be a backward SDE, solved for a couple (Y;, Z;)
» Necessary and sufficient conditions for optimality :
 Maximisation of the Hamiltonian H (-, a;f) = inf, H(-, ).

» FBSDE
* Given the (Forward)-SDE of the state X; and the BSDE of the
adjoint Y,
» when ¢ is the optimum of H, the system Forward-Backward
will be coupled
* Analysis of this system and existence/unicity result.
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Stochastic control

LImroduction and motivation

Introduction — Control problem

» Other results :

* A result on the decoupling field
* i.e. Expression of the adjoint Y; as a function u of the state X :

P(Y = u(t.€,Pe)) = 1

* Propagation of chaos and approximate equilibria :
* Control of McKean-Vlasov dynamics provides equilibria for N
players MFG with a common (i.e. exchangeable) strategy

lim infJ(3) = J(a*)

N—oo é
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Stochastic control

I—Comrol problem — setting and preliminaries

Preliminaries : Differentiability of function of measure

» Notion of differentiability of function with respect to measures :
+ Consider a function H : P,(RY) 3 pn — H(p)
* Idea : Analyse the [ifring (extension) H(X) depending on the r.v.
X el
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Stochastic control

LComrol problem — setting and preliminaries

Preliminaries : Differentiability of function of measure

» Notion of differentiability of function with respect to measures :
* Consider a function H : P,(RY) 3 pu — H(p)
+ Idea : Analyse the /ifting (extension) H(X) depending on the r.v.
Xel
» H is differentiable in p if there exists a r.v. Xo ~ pio s.t. H is the
(Fréchet) differential at X
* DH(X,) is the "representation’ of D,H (1)
* This derivative will be a (determ.) function x — D, H (j1)(-) :

H(u) = H(o) + DH(Xo) - (X — Xo) + o(||X — Xo||2)
= H(po) + DyuH(110) (Xo) - (X — Xo) + o(|[X — Xol|2)
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Stochastic control
LConuol problem — setting and preliminaries

Preliminaries : Differentiability w.r.t measure, an example

Let’s give a concrete example
= (b, 1)

If we define : H(p) = [pa h(x
e It is linear in L2 !

A2

Its lifting : H(X) = E[h(X)]

>
> Its derivative : DH(X) - Y = E[Dh(X) - Y]
» Consequently : D,H(f10)(-) = Dh(-)

» which is not equal to the Frechet-differential /
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Stochastic control

LConuol problem — setting and preliminaries

Preliminaries : Differentiability w.r.t measure, an example

> Let’s give a concrete example :
> If we define : H(p) = [pa h(x = (h, )
e Itis linear in L2 !
> Its lifting : H(X) = E[A(X)]
> Its derivative : DH(X) - Y = E[Dh(X) - Y]
» Consequently : D,H(f10)(-) = Dh(-)
* which is not equal to the Frechet-differential /.
» Other example : function of empirical measure :
> ﬁN'x=(x1,x2,--- )»—>u(ﬁN)
© With i¥ = 3 376y,
> Then Oy, (x) = ¥ Dyu (") (x;)
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Stochastic control

|—C0mrol problem — setting and preliminaries

Preliminaries : other notions

» Other notions :
» Convergence of empirical measures ji" :
* In the sense of the Wasserstein distance

W) =int { ([ e yP alas )’

7 € P2(RY xR?) with marginals 1 and V}
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Stochastic control

LConuol problem — setting and preliminaries

Preliminaries : other notions

» Other notions :
» Convergence of empirical measures ji" :
* In the sense of the Wasserstein distance

Walpo) =int { ([ ey atas )’

7 € Py(RY x RY) with marginals /1 and V}

» Convergence of functions of empirical measure u(x) — u(u) for
W,
> Convergence of the derivative : Dit" (x) — & >, u(pt)(x;)

* Matters to show approximate equilibria and for the convergence of
system of finitely many agents.
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Stochastic control

LCOmml problem — setting and preliminaries

Preliminaries : other notions

» Other notions :
» Convergence of empirical measures " :
* In the sense of the Wasserstein distance

W, (p,v) = inf { (/ lx — y|* 7 (dx, dy))% 7 € Py(RY x RY) with marginals 11 and V}
RAxRA

» Convergence of functions of empirical measure u(x) — u(u) for
W,
» Convergence of the derivative : Dit (x) — % o u(p)(x)

* Matters to show approximate equilibria and for the convergence of
system of finitely many agents.

» Joint differentiability in (x, u) (if the lifting is jointly diff.)
» Convexity : h on P, — which is differentiable — is convex if :
h(i') = h(p) = E[Duh(p)(X) - (X' = X)] >0
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Stochastic control
LA stochastic Pontryagin Principle
L_SPMP - Preliminaries

A stochastic Pontryagin Principle — Hamiltonian

» When controlling the SDE of McKean-Vlasov type, the
Hamiltonian writes :

H(taxaﬂa%Z?a) = b(l‘,x,,u, O[) -y-l—a(t,x,,u,a) 'Z+f(l,x,,LL,Oé)

» One can define its lifting : H(z, x, Py, y,z,a) = Fl(t, x,X,y,2,a)

» Therefore, the derivative w.r.t. P; is given by :

D, H(t,x, ko, y, 2, &) (X) = DH(t,x,X,y, 2, @)
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Stochastic control
LA stochastic Pontryagin Principle
L_SPMP - Preliminaries

A stochastic Pontryagin Principle — Adjoint

» Under some regularity/Lipschitzianity of coefficient (b, o) and
regularity conditions of derivatives of f and g w.r.t. x and 1, we
define the (Y;, Z;) solution of the adjoint backward SDE

{dYt = —D.H(t,X,, Px,, o, Y1, Z)dt + Z,dW, — E[D,H(1,X,, Px,, v, Vi, ) (X,)]
Yr = ng(XT7 ]P)XT) + IE [Dug(iﬂ ]P)XT) (XT)]

* Tilde variables : independent copies

* D,H(~,Pyx,)(X;) : deterministic function taken in X;.

 Existence/uniqueness of this BSDE : provided by a suitable
modification of Pardoux and Peng’s proof
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Stochastic control
LA stochastic Pontryagin Principle
L SPMP - Necessary and sufficient conditions

Pontryagin Principle — Necessary condition

» Assumption of convexity are important :

* The Hamiltonian H is convex in o

* The space of control A is convex

* Regularity assumptions on the coefficients : continuity,
differentiability, uniform-boundedness in initial conditions and of
the derivatives, and ’at-most’ linearity in (x, u, @)

» The optimum of the control necessarily implies that the
Hamiltonian is minimized :

H(t,X,,Px,, Y;, Zi, o) = inf H(t, X, Px,, Y1, Z,, o) dt @ dPa.e.
(0%

» The proof use perturbation arguments.
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Stochastic control
LA stochastic Pontryagin Principle
L SPMP - Necessary and sufficient conditions

Pontryagin Principle — Necessary condition, proof

» Ideas of the proof : perturbation method :
» Variations of the objective J around the optimal o*
* Taking Jat o = a + (8 — )
* Computing the Gateaux-derivative of J
> Using notation 0; = (¢, X;, Px,, ;) and ¥ = (X;, Px,)
* Start by defining a variation process V;, being the "First-order
approximation’ [Lem. 4.1] of the perturbed process : X*~ =: X¢

2
=0

X*—-X
limE | sup -V
e—0 0<t<T 13

* V, is complicated and is composed of derivatives of (b, o) w.r.t. the
variables (x, p, av).
» Computing the G-diff of J [Lem. 4.2, Cor. 4.4] in « :

lim diJ(aE) = IE/O [D,J(H,) Vi + IE(DMf(a,)(f(,)) + Dof(6:) - (B — a,)]dt

e—=>0de

+E[Dig(0r) - Vi + E(D,g(0r) (X)) - V)]
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Stochastic control
LA stochastic Pontryagin Principle
L SPMP - Necessary and sufficient conditions

Pontryagin Principle — Necessary condition, proof

» Ideas of the proof : perturbation method :
» Variations of the objective J around the optimal o*
 Using the reexpression of the last term [Lem. 4.3 &Cor. 4.4], as an
integral over time, one can obtain :

d T
lim 7.](056) = E/ [DQH(t7XtaIEDX17 YtaZlaaf) ! (ﬂl - al)]dt
0

e—=>0de

* All these, obtained through chain-rule argument, but this time with
function of measures.
* By optimality condition :

Jim dif(a +e(B—a)) >0

e—=>0de
* Thanks to convexity of the Hamiltonian in «, obtain :
H(t, X[, IP)X’, Yt7 Ztv B[) Z H(t, Xf7 IP)Xm Y[, Zt? at) dt ® dIP)a.e.
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Stochastic control
LA stochastic Pontryagin Principle
LSPMP - Necessary and sufficient conditions

Pontryagin Principle — Sufficient condition

» Under convexity assumptions :

* Convexity of the cost function : (x, ) — g(x, ) and
(x, py ) = H(t,x, 1, Yy, Zy ) dt @ dPace.

» The same regularity assumptions as above

* If X is solution of the McKean-Vlasov SDE and (Y}, Z;)[o,7] the
adjoint processes,

> If:
f](l’7 Xt) ]P)Xr, Yf) ZI’ a;) = lan(t’ Xl‘) ]IDX[7 Yt7 ZI7 CVI) dt®d]P>_ae
a/

» It is sufficient for the optimal control J(a*) = infy J(&).
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Stochastic control
LA stochastic Pontryagin Principle
LSPMP - Necessary and sufficient conditions

Pontryagin Principle — Sufficient condition, proof

> Ideas of the proof : relies deeply on the assumption of convexity
» Express the difference J(a*) — J(a)

* In terms of differences in the functions g and f
* Using f(0;) = H(60)) — (b-y+0)(0))
* Use the convexity of H w.r.t. (x, i1)

J(a*)-J(a/) <E /O {H(H;)—H(Gt’)—DxH(G,)~(X;—X{)+IE[DMH(g)(X;)-(f(;—)N(;)] }dz

» implying the optimality of o*

Thomas Bourany Stochastic control Soutenance 16/28



Stochastic control
LRefnrmulation as a Forward-Backward SDE

Reformulation as a Forward-Backward SDE

v

Now, we had a SDE for X; and a BSDE for (Y;, Z;)

Idea : with a sufficient and necessary condition, need to use
probabilistic methods to solve the control.

v

v

Obtain a FBSDE system that is coupled by the optimal control :
o (t,X,,Px, Y;,7Z;) € argmin H(-, @)
e

v

Require to restrict the model, i.e. with assumptions :

* (i) the coefficients linear in the first-moment of the law of state
fi= [ xdp(x)

* (ii) the above regularity assumptions on functions/coefficients

e (iii) Lipschitz-continuity of Df, Dg (w.r.t. x, i or o)

* (iv) Convexity of f and thus H in (x, p, o)

Thomas Bourany Stochastic control Soutenance
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Stochastic control
LReformula{ion as a Forward-Backward SDE

Reformulation as a Forward-Backward SDE

» The FBSDE is reformulated :

X, = [b? FB'EX] + 62X, + b2’ (1, X, Py, Y, Z,)]dt n 1)
[0} + o/E[X/] + 07X + 0] o (1. X:, Px, Y., Z,) | AW,
ay, = — [D,cf(t, X, Px,, o (t, X, Py, Vi, Z,)) + b2, + afzt] dt + Z,dw,
_ {]E[Dpf(t, X, Py, a* (t, X, Px, ¥, Z)) (X,)] + BYE[Y,] + a}E[z,]}dt
Xo = xo Yr = Dug(Xr, Px,) + E[D,g(Xr, Px, ) (Xr)]

where b, b}, b?, b}, 60, 0!, 67 and &} are the parameters of the model

» Under the above conditions, this FBSDE has a unique solution.
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Stochastic control
LReformula{ion as a Forward-Backward SDE

Forward-Backward SDE — Existence and unicity

» Based on the continuation method :

 Use the result of existence and uniqueness when the FBSDE is
known to hold.
* And show the result is preserved when the coefficients are
perturbed.
* Linear perturbations, (natural), which justify the restriction of the
model.
> To insure that the function (¢, x, i, y,z) — a*(t,x, {1, , z) is locally
bounded and Lipschitz continuous w.r.t. (x, i, y, z)
» In particular, the Lipschitz-property w.r.t. 1 is non-standard and is
proved by the use of (iii), convexity of f and ™ being critical point
of the Hamiltonian.
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Stochastic control
LRefnrmulation as a Forward-Backward SDE

Forward-Backward SDE — Existence and unicity, proof

» Ideas of the proof : Continuation method :
» Reformulation of the FBSDE :
* Discounting (b, o) and (D,H, D, H) and (D,g,D,.g) by 7,
+ Adding linearly a perturbation T = (Z%,7°, 7/, I¥)
» Using the notation O, = (1, X;, Px,, o, Y1, 7Z;),
0, = ([7X,,]P)XI, th) and ¥r = (XT,]PXT) :
dX, = (vyb(6,) + IP)dt + (o (6,) + Z7)dW,

dy, = — (fnyH(@t) +E[DHO)(X)] + T ) dt + Z,aw,
Yr = (Dug(9r) + E[Dyg(Ir) (X)) ) + T
oy = a*(®t>

* This formulation is F (v, £, Z) for initial condition Xy = £

* Property S, holds true when the FBSDE F (v, &,Z) — for any
¢ € ? and any T — has a unique solution.
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Stochastic control
LReformula{ion as a Forward-Backward SDE

Forward-Backward SDE — Existence and unicity, proof

v

Ideas of the proof :

Based on [Lemma 5.4] : if there exists a y € [0, 1) s.t. S, holds
true, then there exists dg s.t. S, holds true for n < dp and
y+n<1

The proof of this lemma is based on Picard’s contraction theorem.

v

v

v

The existence and uniqueness is thus proved :

 Since Sy — the trivial solution of the FBSDE — is known
¢ Induction on 7 up to S; and Z = 0 = prove the result for the
FBSDE eq. (1).
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Stochastic control
LReformulation as a Forward-Backward SDE

Other results — Decoupling field

» Main difficulty of this FBSDE is that X; and Y; are coupled by the
optimum o* (¢, Xy, Px,, Y1, Z;)
» There exists a decoupling field :

* Measurable mapping from the solution of the SDE to the solution of
the BSDE

» Holds for a specific initial value : £

Yf =u(t,§,Pe) a.e.

» Holds for the whole space :

Vi e [0, TIYS = u(t, X5, Pe)  ae.

v

The function will satisfy the master equation PDE.

» Open question : difficulty when the coefficient (b, o, f, g) depends
on randomness (+ common noise).
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Stochastic control
L Discussion and relation with other topics

L Difference with MFGs

Difference with MFGs

» Difference between Mean Field Games and Control of McKean
Vlasov

» Reference : Carmona, Delarue and Lachapelle (2013),

» Both models : asymptotic behavior of stochastic differential games
when the number of players goes to infinity.
» Which notion of equilibrium we consider :
* MFG : Nash-equilibrium,
> When an agent optimize, considers the worst possible outcome of the

other players
» The measure of agents is fixed

* Control of McKean-Vlasov : Pareto (cooperative) optimum :

» When the social-planner optimize, it does change the distribution
» Requires the derivative of the Hamiltonian w.r.t. & and w.r.t. p.
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Stochastic control
LDiscussion and relation with other topics

L Difference with MFGs

Difference with MFGs — Probabilistic approach

» Difference between Mean Field Games and Control of McKean
Vlasov
» Reference : Carmona, Delarue and Lachapelle (2013),

* Question : order in which one perform the optimization (control)
and the passage to the limit :

SDE State Dynamics Optimization Nash Equilibrium
__ Uptimization
for N players for N players

My — o0 \V/ VMmN 00
Optimization Mean Field Game?
L
McKean Vlasov Dynamics Controlled McK-V Dynamics?

» Resolution using probabilistic approach : Pontryagin principle and
FBSDE (coupled!)

» But not of McKean-Vlasov type : no change of Px when
perturbing a.
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Stochastic control
LDiscussion and relation with other topics

L Difference with Dynamic Programming Approach

HJB on the space of measure

v

Idea : In this setting, the SDE of McKean Vlasov setting is
non-Markovian

Expand the state space : from R? to R x P, (R9)
Flow property :

* If y is the (initial) law of X

* Defining P, x, =: PP

+ This will imply PP+ — "

= restore the Markov property of the state process.

v

v

v
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Stochastic control
LDiscussion and relation with other topics

LDifference with Dynamic Programming Approach

HJB on the space of measure

> Restart from the control problem :

Wtos o) = inf E[ / F(t,X,, B, )df‘i'g(XT,er)]

O{t tO

> Define (1, 1, @) := (f (8, o alty -, b)), 1) =
EMU(I7XI7M7Q(I7XI7M)))’andg ( ) <g(7/’[/)7ru’>
» With Fubini’s theorem and

T
v(to, pro) = inf [/ FE (6B o)) de + g5 (P )}
To
» Yields the DPP [Thm 3.1] :

v(to, o) = inf [ / FE(6, PR ) dt + v(r, ]P”T‘”“O)]
a o
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Stochastic control
LDiscussi()n and relation with other topics

L Difference with Dynamic Programming Approach

HJB on the space of measure

» Using the same notion of differentiability w.r.t. measure as above,

one can prove the corresponding It6’s formula.
» Obtain the infinitesimal generator :

o 1
L59(0 ) (x) = Dyv(t, 1) (x)-b(t, %, s @t 5, 1)+ Tr (DaDyv(t ) (6)00” (0,5, 1, (0, 1) )
» the HJB is the following :

O +inf [£2(t, p, @) + (£7(r u)(-),m} =0 on [0,T) x P»(RY)
w(T,-) =g" on P,(RY)

» ’Standard’ verification methods :
* Supposing w is bounded in C'%([0, 7] x P, (R?))
* and solution of HIB and o* realize the inf. of the Hamiltonian
 then w = v and the optimal control is given in feedback form by a*.
> Viscosity solution :
» The value function (defined on the space of measure!) is a viscosity
solution to the HIB [Prop 5.1].
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Stochastic control
LDiscussion and relation with other topics

LDifference with Dynamic Programming Approach

Discussion and conclusion

» Complete, exhaustive article

» Several restrictive assumptions for the proof of
existence/uniqueness of the coupled FBSDE.

» Several results not so new (Differentiability w.r.t. measure,
Pontryagin Principle for MKV SDE)

» However, very interesting subject, pedagogical approach, link with
many other theories.

» Thank you for you attention!

Thomas Bourany Stochastic control Soutenance 28/28



Stochastic control
L Références

Cardaliaguet, Pierre (2013/2018), ‘Notes on mean field games.’, Lecture notes from P.L.
Lions’ lectures at College de France and P. Cardaliaguet at Paris Dauphine .

Cardaliaguet, Pierre, Frangois Delarue, Jean-Michel Lasry and Pierre-Louis Lions
(2015), ‘The master equation and the convergence problem in mean field games’,
arXiv preprint arXiv :1509.02505 .

Carmona, René and Frangois Delarue (2014), The master equation for large population
equilibriums, in D.Crisan, B.Hambly and T.Zariphopoulou, eds, ‘Stochastic Analysis
and Applications 2014’, Springer International Publishing, Cham, pp. 77-128.

Carmona, Rene and Francois Delarue (2018), Probabilistic Theory of Mean Field
Games with Applications I-11, Springer.

Carmona, René, Frangois Delarue and Aimé Lachapelle (2013), ‘Control of
mckean—vlasov dynamics versus mean field games’, Mathematics and Financial
Economics 7(2), 131-166.

Carmona, René, Frangois Delarue et al. (2013), ‘Mean field forward-backward
stochastic differential equations’, Electronic Communications in Probability 18.

Carmona, René, Frangois Delarue et al. (2015), ‘Forward—backward stochastic
differential equations and controlled mckean—vlasov dynamics’, The Annals of
Probability 43(5), 2647-2700.

Thomas Bourany Stochastic control Soutenance 28/28



Stochastic control
L Discussion and relation with other topics

L Difference with Dynamic Programming Approach

Fleming, Wendell H and Halil Mete Soner (2006), Controlled Markov processes and
viscosity solutions, Vol. 25, Springer Science & Business Media.

Peng, Shige and Zhen Wu (1999), ‘Fully coupled forward-backward stochastic
differential equations and applications to optimal control’, SIAM Journal on Control
and Optimization 37(3), 825-843.

Pham, Huyén and Xiaoli Wei (2015), ‘Bellman equation and viscosity solutions for
mean-field stochastic control problem’, arXiv preprint arXiv :1512.07866 .

Pham, Huyén and Xiaoli Wei (2017), ‘Dynamic programming for optimal control of

stochastic mckean—vlasov dynamics’, SIAM Journal on Control and Optimization
55(2), 1069-1101.

Yong, Jiongmin and Xun Yu Zhou (1999), Stochastic controls : Hamiltonian systems
and HJB equations, Vol. 43, Springer Science & Business Media.

Thomas Bourany Stochastic control Soutenance 28/28



	Introduction and motivation
	Control problem – setting and preliminaries
	A stochastic Pontryagin Principle
	SPMP - Preliminaries
	SPMP - Necessary and sufficient conditions

	Reformulation as a Forward-Backward SDE
	Discussion and relation with other topics
	Difference with MFGs
	Difference with Dynamic Programming Approach


